University of Mumbai

Program: Computer Engineering Curriculum Scheme: Rev 2019 Examination: SE Semester III

Course Code: CSC302 and Course Name: Discrete Structures and Graph Theory

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks		
1	$(n \rightarrow n) \mathcal{V}(n \rightarrow n)$ is logically asymptotic to		
1.	$(p \rightarrow r) \lor (q \rightarrow r)$ is logically equivalent to		
Option A: Option B:	$(p \land q) \lor r$		
	$(p \lor q) \to r$		
Option C: Option D:	$ \begin{array}{c} (p \land q) \to r \\ (p \to q) \to r \end{array} $		
Option D.	$(p \rightarrow q) \rightarrow 1$		
2.	How many five-digit numbers can be made from the digits 1 to 7 if repetition is allowed?		
Option A:	16807		
Option B:	54629		
Option C:	23467		
Option D:	32354		
3.	Two sets are called disjoint if there is the empty set.		
Option A:	Union		
Option B:	Intersection		
Option C:	Complement		
Option D:	Difference		
4.	A sub lattice (say, S) of a lattice(say, L) is a convex sub lattice of L if		
Option A:	x >= z, where x in S implies z in S, for every element x, y in L		
Option B:	$x \ge z$, where x in S implies z in S, for every element x, y in L x=y and y<=z, where x, y in S implies z in S, for every element x, y, z in L		
Option C:	x = y = z, where x, y in S implies z in S, for every element x, y, z in L		
Option D:	x = y = z, where x, y in S implies z in S, for every element x, y, z in L x=y and y>=z, where x, y in S implies z in S, for every element x, y, z in L		
Option D.	x-y and $y > -2$, where x, y in 5 implies 2 in 5, for every element x, y, 2 in E		
5.	The inclusion of sets into $R = \{\{1, 2\}, \{1, 2, 3\}, \{1, 3, 5\}, \{1, 2, 4\}, \{1, 2, 3, 4, 5\}\}$ is necessary and sufficient to make R a complete lattice under the partial order defined by set containment.		
Option A:	$\{1\}, \{2, 4\}$		
Option B:	{1}		
Option C:	$\{1\}, \{1, 2, 3\}$		
Option D:	$\{1\}, \{1, 3\}, \{1, 2, 3, 4\}, \{1, 2, 3, 5\}$		
6.	If A and B are sets and $A \cup B = A \cap B$, then		
	$A = \Phi$		
Ontion A.	$\Lambda = \Psi$		
Option A:	$\mathbf{P} - \mathbf{\Phi}$		
Option B:	$B = \Phi$		
-	$B = \Phi$ $A = B$ $A \subseteq B$		

7			
7.	The compound propositions p and q are called logically equivalent if is		
	a tautology.		
Option A:	$p \leftrightarrow q$		
Option B:	$p \rightarrow q$		
Option C:	$\neg (p \lor q)$		
Option D:	¬p V ¬q		
8.	If every element of a group G is its own inverse, then G is		
Option A:	finite		
Option B:	infinite		
Option C:	cyclic		
Option D:	Abelian		
9.	Consider the binary relation, $A = \{(a,b) b = a - 1 \text{ and } a, b \text{ belong to } \{1, 2, 3\}\}$. The reflexive transitive closure of A is?		
Option A:	$\{(a,b) a \ge b \text{ and } a, b \text{ belong to } \{1, 2, 3\}\}$		
Option B:	$\{(a,b) a > b and a, b belong to \{1, 2, 3\}\}$		
Option C:	$\{(a,b) a \le b \text{ and } a, b \text{ belong to } \{1, 2, 3\}\}$		
Option D:	$\{(a,b) a = b \text{ and } a, b \text{ belong to } \{1, 2, 3\}\}$		
10.	Let f and g be the function from the set of integers to itself, defined by $f(x) = 2x + 1$		
	1 and $g(x) = 3x + 4$. Then the composition of f and g is		
Option A:	6x + 7		
Option B:	6x + 6		
Option C:	6x + 8		
Option D:	6x + 9		
11.	An algebraic structure is called a semigroup.		
Option A:	(P, *)		
Option B:	(Q, +, *)		
Option C:	$(\mathbf{P}, +)$		
Option D:	(+, *)		
12.	Solve using warshall's algorithm $R=\{(a,b),(b,a),(b,c)\}$ defined of A where		
	$A = \{a, b, c\}$		
Option A:	$\{(a,a),(c,c),(b,a),(b,b),(b,c)\}$		
Option B:	$\{(a,a),(a,b),(a,c),(b,c)\}$		
Option C:	$\{(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b)\}$		
Option D:	$\{(a,a),(a,b),(a,c),(b,a),(b,b),(b,c)\}$		
13.	The number of symmetric relations on a set with 15 distinct elements is		
	The number of symmetric relations on a set with 15 distinct elements is		
Option A:	2196		
Option B:	250 2320		
Option C:			
Option D:	278		
1 /	A qualia anoun is always		
14.	A cyclic group is always		
Option A:	abelian group		
Option B:	monoid		
Option C:	semigroup		

Option D:	subgroup
option D.	- Sacorh
15.	If the longest chain in a partial order is of length l, then the partial order can be
101	written as disjoint antichains.
Option A:	12
Option B:	1+1
Option C:	1
Option D:	11
1	
16.	Warshall's Algorithm is used to findclosure
Option A:	Transitive
Option B:	Symmetric
Option C:	Asymmetric
Option D:	Reflexive
17.	and are the two binary operations defined for lattices.
Option A:	Join, meet
Option B:	Addition, subtraction
Option C:	Union, intersection
Option D:	Multiplication, modulo division
18.	In a group of 300 persons, 160 drink tea and 170 drink coffee, 80 of them drink
	both, How many persons do not drink either?
Option A:	40
Option B:	45
Option C:	50
Option D:	60
19.	How many properties can be held by a group?
Option A:	2
Option B:	3
Option C:	5
Option D:	4
20	
20.	Suppose S is a finite set with 7 elements. How many elements are there in the
	largest equivalence relation on S?
Option A:	100
Option B:	56
Option C:	49
Option D:	78

Q2			
(20 Marks Each)			
А	Solve any Two Questions out of Three 10 marks each		
i.	How many four digits can be formed out of digits 1,2,3,5,7,8,9 if no digits		
	repeated twice? How many of these will be greater than 3000?		
ii.	Let A={1,2,3,4,5} and let		
	$R=\{(1,1),(1,3),(1,4),(2,2),(2,5),(3,1),(3,3),(3,4),(4,1),(4,3),(4,4),(5,2),(5,5)\}.$		

	Check if R is a equivalence relation. Justify your answer. Find equivalence classes of A.
iii.	What is the solution of the recurrence relation an= -an-1 +4an-2 + 4an-3 with a0=8, a1=6 and a2=26?

Q3. (20 Marks Each)			
Α	Solve any Two Questions out of Three	10 marks each	
i.	Find the number of positive integers not exceeding 100 that are not divisible by 5 or 7. Also draw corresponding Venn diagram.		
ii.	A travel company surveyed its travelers, to learn how much of their travel is taken with an Airplane, a Train or a car. The following data is known; make a complete Venn Diagram with all the data. The number of people who flew was 1307. The number of people who both flew and used a train was 602. The people who used all three were 398 in number. Those who flew but didn't drive came to total 599. Those who drove but did not use train totaled 1097. There were 610 people who used both trains and cars. The number of people who used either a car or train or both was 2050. Lastly, 421 people used none of these .Find out how many people drove but used neither a train nor an airplane, and also, how many people were in the entire survey.		
iii.	Prove that set G={1,2,3,4,5,6} is a finite abelian group of order 6 w.r.t multiplication module 7.		